# Course at a Glance

### Plan

The Course at a Glance provides a useful visual organization for the AP Physics 1 course components, including:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the science practices across units.

## **Teach**

#### **PRACTICES**

Science Practices spiral throughout the course

1 Creating Representations



2 Mathematical Routines

## **Required Course** Content

Each topic contains required Learning Objectives and **Essential Knowledge Statements** that form the basis of the assessment on the AP Fxam.

### Assess

Assign the Progress Checkseither as homework or in class—for each unit. Each **Progress Check contains** formative multiple-choice and free-response questions. The feedback from these checks shows students the areas where they need to focus.



### **Kinematics**

~12-17 Class Periods

10-15% AP Exam Weighting

- 1.1 Scalars and Vectors in **One Dimension** 1 2 3
  - 1.2 Displacement, Velocity, and Acceleration
  - **1.3** Representing Motion
- 1 2 3 1.4 Reference Frames and **Relative Motion** 
  - 1.5 Vectors and Motion in Two Dimensions

Force and **Translational Dynamics** 

~22-27 Class Periods 18-23 AP Exam Weighting

- 2.1 Systems and Center of
- 2.2 Forces and Free-Body **Diagrams**
- 2.3 Newton's Third Law
- 2.4 Newton's First Law
- 2.5 Newton's Second Law
- 2.6 Gravitational Force
- 2.7 Kinetic and Static **Friction**
- 2.8 Spring Forces
- 2.9 Circular Motion

## **Progress Check 1**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

#### **Progress Check 2**

Multiple-choice: ~30 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation



~22-27 Class Periods 18-23% AP Exam Weighting

| 1 2 3 | 3.1 Translational Kinetic<br>Energy |
|-------|-------------------------------------|
| 1 2 3 | 3.2 Work                            |
| 1 2 3 | <b>3.3</b> Potential Energy         |
| 1 2 3 | <b>3.4</b> Conservation of Energy   |
| 1 2 3 | 3.5 Power                           |



~10-15 Class Periods

10-15% AP Exam Weighting

| 1 2 3 | 4.1 Linear Momentum                     |
|-------|-----------------------------------------|
| 1 2 3 | 4.2 Change in Momentum and Impulse      |
| 1 2 3 | 4.3 Conservation of Linear Momentum     |
| 1 2 3 | 4.4 Elastic and Inelastic<br>Collisions |

#### Torque and UNIT Rotational 5 **Dynamics**

~15-20 Class Periods

10-15<sup>%</sup> AP Exam Weighting

| 1 2 3 | <b>5.1</b> Rotational Kinematics                                           |
|-------|----------------------------------------------------------------------------|
| 1 2 3 | 5.2 Connecting Linear and<br>Rotational Motion                             |
| 1 2 3 | 5.3 Torque                                                                 |
| 1 2 3 | 5.4 Rotational Inertia                                                     |
| 1 2 3 | 5.5 Rotational Equilibrium<br>and Newton's First Law<br>in Rotational Form |
| 1 2 3 | 5.6 Newton's Second Law in Rotational Form                                 |

#### **Progress Check 3**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

#### **Progress Check 4**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

#### **Progress Check 5**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation



~8-14 Class Periods

5-8% AP Exam Weighting

**6.1 Rotational Kinetic** Energy 6.2 Torque and Work **6.3** Angular Momentum and Angular Impulse **6.4** Conservation of **Angular Momentum** 6.5 Rolling 6.6 Motion of Orbiting **Satellites** 

## **Oscillations**

~5-10 Class Periods 5-8% AP Exam Weighting

7.1 Defining Simple 2 **Harmonic Motion** (SHM) 7.2 Frequency and Period of SHM

7.3 Representing and Analyzing SHM 7.4 Energy of Simple

Harmonic Oscillators

## **Fluids**

~12-17 Class Periods

10-15% AP Exam Weighting

- 8.1 Internal Structure and **Density** 8.2 Pressure 8.3 Fluids and Newton's
- Laws 8.4 Fluids and **Conservation Laws**

### **Progress Check 6**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

#### **Progress Check 7**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

#### **Progress Check 8**

Multiple-choice: ~18 questions Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation